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TOPIC: HARDWARE SOFTWARE CO-DESIGN TOOLS FOR MACHINE LEARNING

Hardware designers and software developers operate in fundamentally different ways. Hardware designers deal with highly
parallel programming constructs, optimize their designs heavily, and spend a majority of their efforts on verification. Software
developers focus on usability, fast incremental development, and integration into complex systems. By and large, hardware
and software communities have operated in isolation by using hardware/software interfaces and abstractions (e.g., ISAs).

In recent years, the line between hardware and software has blurred. “Software” companies are seeing the advantages
of developing their own custom hardware, e.g., Microsoft’s SQ2 chip. Since the hardware is designed for the application
at hand, it provides advantages in performance, power consumption, security, and cost. Furthermore, the emergence of
open-source hardware designs, languages, and abstractions have made hardware design easier. Despite all these in-roads,
hardware design still remains challenging.

Machine Learning (ML) applications exemplify these challenges. ML is a must-have for software companies. For ex-
ample, 70% of Google revenue is from ML targeted advertisements. ML algorithms are highly parallel and good targets for
specialized parallel hardware. But, creating optimal ML hardware designs is difficult because the hardware design space is
not considered during ML algorithm development. The ML algorithm design space is high in dimensions, with many viable
network architectures, hyperparameter settings, and optimization approaches (e.g., pruning and quantization). Traditionally,
software companies meticulously search this space using high level ML frameworks like PyTorch and Tensorflow to meet
their accuracy requirements. These frameworks however largely abstract away and ignore the multi-dimensional space of
hardware architectures (e.g., memory bandwidth and hardware precision). ML developers leave it to the hardware spe-
cialists to take their finished ML applications as they are and optimize their performance for hardware. This approach is
problematic. Because ML frameworks do not take the hardware design space into account, many of the ML models are de-
veloped at the expense of hardware. It is only possible to efficiently design hardware for a ML application if the ML algorithm
design space is co-explored with possible hardware mappings.

The traditional approach of isolated software and hardware development suffers from this major challenge: Since soft-
ware developers have already fixed the dimensions of the ML algorithm design space by the time hardware developers
receive them, the hardware design space cannot be effectively explored to achieve hardware-efficient designs.

CHALLENGE: EFFECTIVE DESIGN SPACE EXPLORATION

State-of-the-art ML applications are complicated, with thousands of dimensions and millions of weight parameters. It is
difficult for application developers to understand the impact of their design decisions on hardware performance. Similarly,
it is difficult for hardware developers to understand the impact of their decisions on algorithm accuracy. Without feedback
between each other, it is not possible to explore the application design space with respect to both the software and hardware
intelligently.

Recent developments have sought to effectively and efficiently map neural networks to hardware. Proposals have been
made by both hardware and software oriented groups, with mixed results. FINN is a open source framework initially de-
veloped by the hardware company Xilinx [5]. FINN is an end-to-end tool that generates hardware accelerated inference
networks for Xilinx FPGA platforms, and is focused on quantized neural networks. The tool is implemented using Python
and Vivado HLS and has interfaces to high level ML frameworks such as pytorch. The benefit of this is that hardware
performance is exposed to the algorithm development environment. Although FINN is capable of generating highly optimal
designs, it is not well suited to design space exploration. Modifying a network requires domain specific hardware knowledge.
In our experience, any modifications took several months for PhD and Postdoctoral students to make.

hls4ml is another end-to-end Python tool for generating accelerated inference networks, but was developed by a con-
sortia of software-centric academics [1]. hls4ml has a broader support for ML network designs compared to FINN. It is also
better documented, leading to shorter development times. However, hls4ml relies on Vitis®to map its generated quantized
network IP cores to a Xilinx FPGA and is less optimal. Conversely, FINN expects the user to manually configure a network
mapping on the FPGA.

Although these state-of-the-art ML frameworks bridge the gap between application and hardware design, the status quo
end-to-end paradigm is limited. Existing tools lack feedback cues between the ML and hardware mapping steps, or lack
knobs to tune hardware mappings. Consequently, the end-to-end flow cannot inform iterative exploration of the complete
design space, costing many development hours on both the software and hardware side. What is needed is a framework
with a more informative feedback loop from the hardware tools to the algorithm developer, with more intuitive (ML-specific)
hardware map tuning knobs.
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OPPORTUNITY: APPLICATION-SPECIFIC FEEDBACK TOOL FOR DESIGN SPACE EXPLORATION

State-of-the-art ML application hardware mapping is done using High Level Synthesis (HLS) compilers. Although HLS has
long sought to bridge high level application specifications to hardware mapping, HLS compilers are unwieldy tools. HLS
primitives are highly granular so that HLS can be applied to a broad spectrum of application classes. Unfortunately, the
consequence is that domain-specific hardware design knowledge is required to describe and schedule ML primitives using
HLS tools. This presents an opportunity to develop ML-focused tools that allow co-exploration of the algorithm and hardware
design spaces.

We want to “lift” the hardware design-space exploration to the software or even the algorithmic level to make hardware
software co-design more commonplace. Without exploring the hardware architecture implementation specifics, design
choices made using high level ML frameworks to improve model performance can turn out to be unexpectedly costly during
hardware deployment. For example, although Resnet-a-like networks have good training speed thanks to gradient highways,
they can cause major challenges when trying to realize efficient hardware implementations. Naive skip connections waste
resources due to large buffers required to accurately represent the network, but the connections may not even be necessary
to achieve acceptable results.

Such pitfalls could be avoided with a tool that gives machine learning developers access to various algorithmic, software,
and hardware knobs that they can tune whilst they develop their ML algorithms using an enhanced end-to-end flow. Some
example knobs follow in Table 1:

ML Knobs hyper-parameters model parameters / topology time to convergence model sparsity quantization

HW Knobs memory bandwidth power requirements resource utilization throughput

Table 1: Hardware Software Co-design knobs that could be exposed to ML algorithm developers

MATURITY: REMAINING GAPS IN ML SPECIFIC DESIGN SPACE EXPLORATION APPROACHES

Recent advances in Neural Architecture Search and adjacent research areas offer steps towards such an all-encompassing
tuning tool [3, 4, 6]. For example, [4] introduced Adaptive Threshold Non-Pareto Elimination (ATNE), which is a design
space exploration framework that uses machine learning to tune various OpenCL-to-FPGA knobs (such as unroll factor and
number of SIMD lanes) to automate finding Pareto-optimal designs for a given high level application. This demonstrates
how a smart Hardware Abstraction Layer (HAL) can optimize hardware using a set of abstract design knobs and insulate
the application developer from needing to understand how to make progress towards an optimal hardware mapping.

Although promising, these works are hampered in ML applications because the HAL is not capable of optimizing the
ML network topology. In other words, they do not provide ML network optimization hints to help the application developer
explore the hardware design space as well.

Neural Architecture Search has recently been extended to find hardware and resource friendly ML network designs, as
seen in [2]’s Lamarckian evolutionary algorithm for multi-objective neural architecture design (LEMONADE) algorithm. In
Elsken’s work, hardware architecture is assumed fixed, and a subset of ML design knobs from Table 1 are explored by the
LEMONADE algorithm. This work represents the “top down” counterpart to “bottom up” approaches such as ATNE that
conversely assume the ML design is fixed and explore the HW knobs in Table 1.

Bridging the gap between works such as LEMONADE and ATNE is an exciting prospect that would enable co-exploration
of the ML algorithm and hardware design space. Success in this area would streamline the development of some of the
most widely used applications today. ML application developers would be provided with the tools they need to develop
hardware-friendly networks, and hardware specialists would be able to make informed optimizations to these networks.
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